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Abstract The recent focus of the scientific commu-

nity on multiscale computer modeling techniques of

nano-engineered materials stems from the desire to

develop more realistic methodologies that are capable

of accurately describing the varied time and length

scales associated with this class of materials. Of

importance is the ability to model the atomistic region

using the appropriate techniques such as quantum

mechanics/molecular dynamics, and the continuum

region using homogenized properties. The continuity

of atomistic and continuum regions in a solid neces-

sitates a seamless coupling between these two regions.

This is carried out using a transition region. In view of

the large discrepancy between length and time scales

in atomistic and continuum regions, the development

of the transition region has been the main concern of

the research community. It is the purpose of this

review to critically discuss the issues concerning the

transition region and the efforts made by the scientific

community in treating them. In particular, this review

addresses issues concerning the coupling of molecular

dynamics to finite element modeling techniques.

Three aspects of this review are accordingly consid-

ered. The first is concerned with the current state of

atomistic–continuum coupling techniques in compu-

tational mechanics. The second is concerned with

present the research conducted in the Engineering

Mechanics and Design Laboratory at the University of

Toronto in the field of nano-reinforced interfaces.

Finally, we present the limitations of the current

techniques and suggestions for improvements.
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Nomenclature

a
*

i Acceleration of ith atom

r
*

i Position of ith atom

[B] Matrix containing derivatives of shape

functions

rij Distance between atom i and atom j

Ci Set of atoms around representative atom i

Rf(t) Bridging scale random force term

{d} FE nodal displacement vector

t Time

[D] Elasticity matrix

{T} FE surface traction vector

{e} FE strain vector

u
*

Interpolated displacement field
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Ea Atomistic energy

U FE internal energy

Ea Representative atom energy

U
*

i Displacement on node i

Ec Continuum energy

v
*

i Velocity of ith atom

Ee Elemental energy

Vðr*Þ interatomic potential energy

Ei Energy of atom i

Vi Individual atom potential

EQC Quasicontinuum energy

Vij Two-body potential

fa Force on representative atom a
Vijk Three-body potential

fi EAM electron density dependent

embedding energy

W FE external work

f(t) Bridging scale interatomic force

u, v, w x, y, z displacements in FE

f imp(t) Bridging scale impedance force

q Mass density

F
*

i Force acting on ith atom

h(t-s) Bridging scale time history kernel

=f g FE combined body and applied

force vector

P FE potential energy

gc Atomic level force experienced

by cluster atom c

{r} FE stress vector

mi Mass of ith atom

l Lennard-Jones potential well depth

parameter

MA Atomic mass matrix

w Lennard-Jones hard sphere radius

parameter

M Finite element mass matrix

na Representative atom weight function

[N] Shape function matrix

Ne Number of atoms in element e

Nn Number of nodes

Nrep Number of representative atoms

Abbreviations

AFEM Atomic scale finite element method

CADD Combined atomistic discrete dislocation

method

CB Cauchy-Born rule

CFRP Carbon fibre reinforced plastic

CGMD Coarse grained molecular dynamics

CNT Carbon nanotube

DFT Density functional theory

EA Pure epoxy adhesive

EAM Embedded atom method potential

EANP Epoxy adhesive reinforced with

nanopowder

EANT Epoxy adhesive reinforced with

carbon nanotubes

FE Finite element

FEAt Finite element atomistic method

GFRP Glass fibre reinforced plastic

GLARE Glass reinforced aluminum composites

LJ Lennard-Jones potential

MD Molecular dynamics

MEMS Micro-electrical-mechanical devices

MM Micromechanics

MPM Material point method

NRPC Nano-reinforced polymer composites

QC Quasicontinuum method

QM Quantum mechanics

PDE Partial differential equation

RVE Representative volume element

SWCNT Single-walled carbon nanotube

SW Stillinger-Weber potential

MWCNT Multi-walled carbon nanotube

TB Tight binding method

1 Introduction

There are a variety of modeling methods currently in

use by the research community. They aim not only to

simulate material behavior at a particular scale of

interest but also to assist in developing new materials

with highly desirable properties. These scales can

range from the basic atomistic to the much coarser

continuum levels. The hierarchy of modeling meth-

ods consists of quantum mechanics, molecular

dynamics, micromechanics, and finally continuum

mechanics. Quantum mechanics is the study of

mechanical systems whose dimensions fall on the

atomic scale such as that of atoms and electrons. It

provides the ability to predict the total energy and the

atomic structure of a system of electrons and nuclei.

Quantum effects can be best described using either

the density functional theory or the tight binding

method. Both methods are capable of capturing the

physics of the problem at the Angstrom level.

However, it is unrealistic to extrapolate the results
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of these methods to the continuum level for engineers

to use in system/component design. Similarly, molec-

ular dynamics is a computational method fit for scales

in the nanometer range. All of the physics in the

molecular dynamics method are contained in the

forces acting on each atom in the system. These

forces are determined from interatomic potentials. On

the other hand, micromechanics modeling techniques

employ continuum mechanics techniques to develop

field variables for solids containing defects and

inhomogeneities at the micrometer level. Finally,

continuum mechanics is best suited for scales in the

millimeter range where homogenization and averag-

ing techniques are accurate enough to describe the

material behavior. Individually, each of these meth-

ods is accurate and best suited for its own length scale

and modeling inaccuracies may arise from improper

enforcement of a specific technique associated with a

particular length scale on another. Furthermore, it

would not only be impractical but also very costly to

attempt to model an entire continuum using molec-

ular dynamics because each individual atom would

have to be simulated in the model. The largest

atomistic simulations performed to date by the fastest

supercomputer are on the order of 1 billion atoms,

which only represent a volume of 1 lm3 (Abraham

et al. 2002). Many engineering problems are charac-

terized in terms of multiple scales and require a novel

approach to describe their behaviors. This is carried

out using multiscale computational modeling tech-

niques to describe the behaviors of materials on

scales ranging from atomistic to continuum.

The mechanical deformation and failure of many

engineering materials are in fact multiscale phenom-

ena and the observed macro-scale behavior is

governed by processes that occur on many different

length and time scales. These processes are often

dependant on each other and effect the overall

deformation. It is therefore necessary to model these

systems using a variety of length scales, which

accurately represent the governing physics. The

importance of multiscale modeling can be manifested

in the following example shown in Fig. 1. The figure

demonstrates a typical heterogeneous solid contain-

ing microdefects, inhomogeneities, microcracks, and

a main crack. The modeling of this heterogeneous

solid involves the four simulation techniques men-

tioned above. As the main crack propagates into the

process zone, the atoms at the front of the crack tip

break their bonds with neighboring atoms. This

behavior is accurately represented with quantum

mechanics (QM) using the tight-binding method

(TB). The accuracy of this approach stems from the

fact that ad hoc phenomenological failure models

have been avoided. Further away from the crack tip,

the material is being deformed but not to the point

where bonds are breaking. In this case, the atom

displacements and energies are captured using

molecular dynamics (MD) (Broughton and Abraham

1999; Rudd and Broughton 2000). The interaction

between the main crack and the neighboring micro-

cracks, microdefects, and inhomogeneities can also

be modeled using QM and MD. However, this is only

the case if the distance between them and the size of

the defect or inhomogeniety is on the corresponding

scale of interest. Otherwise, the more appropriate

method of micromechanics (Meguid and Wang 1934,

1994; Gong and Meguid 1993; Wang and Meguid

1999) can be used to capture the long-range interac-

tions. In the far field, the stress/strain fields are of

lower magnitudes and averaged properties across the

length scales are sufficient to accurately represent the

behavior of the continuum using continuum methods

such as the finite element methods (FEM). It is worth

noting that the system shown in Fig. 1 is decomposed

into seven regions of differing dynamics; as follows:

(i) tight binding (TB), (ii) TB-MD interface region,

Fig. 1 Multiscale example
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(iii) molecular dynamics (MD), (iv) MD-MM inter-

face region, (v) micromechanics (MM), (vi) MM-FE

interface region, and (vii) finite element (FE). The

problem is further complicated by the fact that

the continuum stress and strain fields interact with

the other scales of interest. It is crucial that this

two-way interaction between the different scales is

accounted for in any viable multiscale simulation.

Capturing the interaction between the scales of

interest is of key concern to multiscale modeling

methods and is entirely dependent on the coupling

scheme used. There are two main techniques cur-

rently adopted in the treatment of this class of

problems. The first is the atomistic-based continuum

technique, in which the atomistic region is smeared

and included in a continuum model that describes the

entire field of atomistic and continuum. In this case,

the problem can be subdivided into both atomistic

and continuum domains although the overall model is

averaged into one continuum representation. Both

sub-domains contain their own constitutive laws but

the governing relations for the problem as a whole are

obtained through the homogenization of the resulting

continuum. The atomistic-based continuum approach

will not be further considered in this review.

The second, which is discrete in nature, relies on

coupling atomistic solutions, using for example MD,

with discrete models using the finite element method.

The discrete methods can be further subdivided into

sequential and concurrent coupling methods. Sequen-

tial methods, sometimes referred to as hierarchical

methods, pass information (displacement or force

fields) from the finer scale as boundary conditions to

the coarser one. The sequential approach assumes

that the problem considered can be easily separated

into processes that are governed by different length

and time scales. Therefore, the coarse-scale physics

are completely determined by the fine scale along

with the corresponding boundary conditions. Many

physical phenomena can be readily modeled using

single scale methods where the physics of the coarser

scale are condensed into few parameters. Further

details regarding sequential coupling will be pre-

sented in Sect. 3. Concurrent methods, on the other

hand, perform the entire multiscale simulation simul-

taneously and continually feed information from one

length scale to the other in a seamless fashion.

Concurrent methods are better suited in representing

scales with a heavy dependence on each other

because of the continuous transfer of information

between the different scales. In essence, the passing

of information ensures consistency amongst the field

variables between the two simulation methods.

Researchers have developed a wide variety of

different concurrent methods that have been applied

to problems ranging from the modeling of MEMS

devices (Rudd and Broughton 1999; Rudd 2000) to

nanoindentation material response (Tadmor et al.

1996a, 1999). In this review, our focus is on discrete

coupling methods which include both sequential and

concurrent methods.

Several excellent reviews have been published

which address the methods used to couple the

atomistics to the continuum. These reviews include

those by Liu et al. (2004a, b), Park and Liu (2004),

Rudd and Broughton (2000), Vvedensky (2004), and

Curtin and Miller (2003). An excellent review has also

been published on single scale modeling methods by

Ghoniem et al. (2003).

The objectives of this review, however, are three-

fold. In the first, we describe the current state of

literature in the field of atomistic/continuum modeling,

while in the second, we present the experimental and

theoretical research currently being conducted by the

authors in the field of nano-reinforced interfaces. In the

third, we discuss the limitations of these existing

techniques.

The layout of this review is as follows. Following

this introduction section, we will describe the funda-

mental formulations pertaining to molecular dynamics

and continuum mechanics in Sect. 2. In Sect. 3, we

will discuss the sequential and concurrent coupling

approaches with a predominant focus on concurrent

coupling methods. In Sect. 4, we will describe the

research currently being conducted at the Engineering

Mechanics and Aircraft Design Laboratory at the

University of Toronto in the area of nano-reinforced

interfaces. Finally, in Sect. 5, we will outline some of

the limitations of the coupling efforts as well as

suggest possible enhancements.

2 Fundamental formulations

2.1 Molecular dynamics

Molecular dynamics is a computational method used

to simulate the time dependent behavior of molecular
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systems. MD simulations provide a means of inves-

tigating the structure, dynamics, and thermodynamics

of individual molecules. The simulations generate

trajectories that describe the atomic positions, veloc-

ities, and accelerations of individual particles as they

vary with time. These trajectories are then used to

obtain average values of system properties such as

energy, pressure and temperature.

At the core of the molecular dynamics method is

the process of determining the forces acting on

individual atoms. These forces are then used to

evolve the simulations in time by incorporating them

into Newton’s second law, as follows:

F
*

i ¼ mia
*

i ð1Þ

where F
*

i is the force acting on particle i, mi is the

mass of particle i, and a
*

i is its acceleration. The

atomic forces are determined by taking the gradient

of the systems total potential energy, Vðr*Þ; as given

by

F
*

i ¼ �riVðr*Þ ð2Þ

where V(r) is the system’s position-dependent inter-

atomic potential. It represents the potential energy of

the system when the atoms are arranged in a specific

configuration. Combining Eqs. 1 and 2

�riVðr*Þ ¼ mia
*

i ð3Þ

illustrates that the derivative of the potential energy

with respect to the particle position can be related to

the acceleration of that particle.

Only the initial positions, velocities, and an

expression for the total system potential energy need

to be provided to conduct a molecular dynamic

simulation. In most MD simulations, the initial

atomic positions are determined by the material and

the problem being simulated, whereby they are

chosen to coincide with the atomic lattice locations.

The initial velocities are generated randomly based

on statistical mechanics at a specified temperature.

The other quantity of interest needed to conduct an

MD simulation is an expression for the total potential

energy. The total potential energy of an atomic

system is described using classical interatomic

potentials that can be expressed in a wide variety of

forms. The general expression for total atomistic

potential energy can be expressed as

Vðr*1; r
*

2; . . .; r
*

NÞ ¼
X

i

Viðr*iÞ þ
X

i;j;j [ i

Vijðr*i; r
*

jÞ

þ
X

i;j;k;k [ j [ i

Vijkðr*i; r
*

j; r
*

kÞ þ � � �

ð4Þ

where N is the number of atoms in the system. The

functions Vm are called m-body potentials and

describe the interaction of one to m pairs of atoms.

The first term represents the energy of the isolated

atom i. The second accounts for two-body interac-

tions of the atoms i and j, and the third for the three-

body interactions, and so on.

In the field of multiscale modeling, many different

interatomic potentials have been used. This is primar-

ily because of the large variance in the materials being

studied. The choice of potential for a molecular

dynamics simulation is determined by factors such as

the material being modeled, the bond type, the desired

accuracy, and available computational resources.

Here we restrict our attention to the Lennard-Jones

(LJ), embedded-atom (EAM), and Stillinger-Weber

(SW) potentials for the purpose of demonstrating their

applicability and differences.

The Lennard-Jones potential is termed a pair

potential. Pair potentials only account for the energies

associated with the relative displacement of two

atoms and can be an oversimplification in some cases.

The Lennard-Jones (Jones 1924) potential is defined

as

Vij ¼ 4l
1

rij=w
� �12

� 1

rij=w
� �6

" #
ð5Þ

where l is the potential well depth, w is the hard

sphere radius of the atom or the distance at which Vij is

zero, and rij is the distance between the two atoms i

and j. The 12th power term is meant to model the

repulsion between two atoms as they approach each

other. The 6th power term adds cohesion to the

system, and is intended to mimic van der Waals type

forces. The van der Waals forces are weaker than the

repulsion term hence its lower order. The LJ potential

is used for large-scale simulations where computa-

tional efficiency is highly desirable and the focus is on

fundamental issues rather than the study of specific

material properties. The LJ potential can be consid-

ered accurate for materials that have no electrons
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available for bonding and only interact through van

der Waals forces.

The EAM and SW types of interatomic potentials

are termed multi-body potentials. These types of

potentials not only account for the relative pair-wise

displacement energies, but can also include energies

associated with electron densities, bond bending,

torsion, and other effects which are neglected in pair

potentials. The EAM potential (Daw and Baskes 1984)

is a common choice for metals. The EAM constitutive

law involves an energy associated with embedding the

atom into a local electron density of the surrounding

atoms. The EAM energy of an atom is given by

Ei ¼ fið�qiÞ þ
1

2

X

j6¼i

VijðrijÞ ð6Þ

where fi is an electron density dependent embedding

energy and Vij is a pair potential between atom i and

its neighbor j. The electron density at atom i, qi, is the

superposition of density contributions from each of

the neighbors such that

�qi ¼
X

j 6¼i

qjðrijÞ ð7Þ

The SW type (Stillinger and Weber 1985) energies

involve both two- and three-body interaction terms.

The SW potentials are normally used for covalent

materials, semiconductors and when multi-body inter-

actions are important. The main difference between

the EAM and SW type atomistic laws is that instead of

an embedding energy, SW includes a term involving-

three body interactions to account for the directional

bonding in covalent materials. The SW energy of an

atom i is

Ei ¼
1

2

X

j 6¼i

VijðrijÞ þ
1

6

X

i;j;k;k [ j [ i

Vijkðr*i; r
*

j; r
*

kÞ ð8Þ

where Vijk is the three-body interaction potential.

Nearly all interatomic potentials used in MD

simulations incorporate a cut-off distance whereby

interactions between atoms that extend beyond this

distance are ignored. The purpose of this truncation is

to reduce the number of degrees of freedom that need

to be included in determining the energy associated

with a particular atom. This also lends to the fact that

the energy in an MD simulation is non-local. This

effectively means that the energy in a bond between a

pair of atoms depends not only on the position of the

immediate neighbors but also with atoms within a

specified radius. This radius is always chosen as the

cut-off distance of the interatomic potential being

used.

The total potential energy is a function of the

atomic positions of all the atoms in the system. Due to

the complexity of such a function, the resulting

equations of motion are integrated numerically. Dif-

ferent numerical algorithms have been employed in

MD simulations for integrating the equations of

motion. The most popular of which is the Verlet algo-

rithm (Verlet 1967). All the algorithms assume that the

positions, velocities and accelerations can be approx-

imated by a Taylor series expansion as given by

rðt þ DtÞ ¼ rðtÞ þ vðtÞDt þ 1

2
aðtÞDt2 þ � � � ð9Þ

vðt þ DtÞ ¼ vðtÞ þ aðtÞDt þ 1

2

d3rðtÞ
dt3

Dt2 þ � � � ð10Þ

and a similar expression for the acceleration. In the

above Dt is the timestep used throughout the simu-

lation. The verlet algorithm proceeds by only writing

two third-order Taylor series expansions of the

position, one forward in time and the other backward

in time as follows:

rðt þ DtÞ ¼ rðtÞ þ vðtÞDt þ 1

2
aðtÞDt2

þ 1

6

d3rðtÞ
dt3

� �
Dt3 ð11Þ

rðt � DtÞ ¼ rðtÞ � vðtÞDt þ 1

2
aðtÞDt2

� 1

6

d3rðtÞ
dt3

� �
Dt3 ð12Þ

Then by combining the above two equations, we

obtain

rðt þ DtÞ ¼ 2rðtÞ � rðt � DtÞ þ aðtÞDt2 ð13Þ

where a(t) is expressed as the force divided by the

mass, and the force itself is a function of the positions

as given by Eq. 2. This is the general form of the

verlet algorithm. This method is time-reversible, has

good energy conservation properties and has low

memory storage because the velocities are not

included in the time integration. However, removing

the velocity from the integration introduces numerical

inaccuracies. This has lead to the development of

other algorithms that are based off of the Verlet
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method, namely the velocity Verlet (Allen and

Tildesley 1987) and Verlet leap-frog (Hockney

1970) algorithms which explicitly involve the velocity

in the time evolution of the atomic coordinates. We

refer the reader to three excellent reviews that address

the molecular dynamics method in its entirety that

have been published by Rafii-Tabar (2000), Carlsson

(1990), and Ercolessi (1997) for further reading.

2.2 Finite element method

The traditional framework in mechanics has always

been the continuum. Under this framework, materials

are assumed to be composed of a divisible continuous

medium, with a constitutive relation that remains the

same for a wide range of system sizes. Continuum

equations are typically in the form of deterministic or

stochastic partial differential equations (PDE’s). The

underlying atomic structure of matter is neglected

altogether and is replaced with a continuous and

differentiable mass density. Similar replacements are

made for other physical quantities such as energy and

momentum. Differential equations are then formu-

lated from basic physical principles, such as the

conservation of energy or momentum. There are a

large variety of numerical methods that can be used for

solving continuum partial differential equations, the

most popular being the finite element method (FEM).

The finite element method is a numerical method for

approximating a solution to a system of partial

differential equations. The FEM proceeds by dividing

the continuum into a number of elements, each

connected to the next by nodes. This discretization

process converts the PDE’s into a set of coupled

ordinary equations that are solved at the nodes of the

FE mesh and interpolated throughout the interior of the

elements using shape functions. The main advantages

of the FEM are its flexibility in geometry, refinement,

and loading conditions. It should be noted that the FEM

is local, which means that the energy within a body

does not change throughout each element and only

depends on the energy of the nodes of that element.

The total potential energy under the FE framework

consists of two parts, the internal energy U and

external work W

P ¼ U �W ð14Þ

The internal energy is the strain energy caused by

deformation of the body and can be written as

U ¼ 1

2

Z

X

frgTfegdX ¼ 1

2

Z

X

fegT ½D�fegdX ð15Þ

where rf g ¼ rxx ryy rzz sxy syz sxz

� �T
denotes the

stress vector, ef g ¼ exx eyy ezz cxy cyz cxz

� �T
denotes

the strain vector, [D] is the elasticity matrix, and X
indicates that integration is over the entire domain.

The external work can be written as

W ¼
Z

X

fu v wg
=x

=y

=z

8
<

:

9
=

;dX

þ
Z

C

fu v wg
Tx

Ty

Tz

8
<

:

9
=

;dC ð16Þ

where u, v, and w represent the displacements in x, y, z

directions, respectively, {=} is the force vector which

contains both applied and body forces, {T} is the surface

traction vector, and C indicates that the integration of

the traction occurs only over the surface of the body.

After discretization of the region into a number of

elements, point-wise discretization of the displace-

ments u, v, and w for the respective x, y, and z directions,

is achieved using shape functions [N] for each element,

such that the total potential energy becomes

Pg ¼ 1

2
df gT

Z

Xg

B½ �T D½ � B½ � df gdX

� df gT

Z

Xg

N½ �T
=x

=y

=z

8
<

:

9
=

;dX

� df gT

Z

Cg

N½ �T
Tx

Ty

Tz

8
<

:

9
=

;dC ð17Þ

where [B] is the matrix containing the derivatives of

the shape functions, and {d} is a vector containing

the displacements. A full description of the finite

element method can be found in either of the texts by

Hughes (1987) or Zienkiewicz (1991).

3 Coupling methods in nanomechanics

In this section we will introduce both sequential and

concurrent coupling methods with emphasis on the

latter. It is important to distinguish between the two

approaches and identify how they proceed in cou-

pling the scales of interest.
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3.1 Sequential coupling

Sequential coupling methods, as their name suggests,

perform the simulations in step-by-step fashion in a

bottom-up approach. In doing so, the simulations are

running independently of each other and a complete

separation of both length and time scales is achieved.

Sequential methods employ parameter passing

between the different simulation methods. The outputs

of the finer scale simulation are used as boundary

conditions for the coarser scale. These boundary

conditions can consist of displacement or force fields.

Due to the fact that the simulations are not simulta-

neously, it is important to feedback the force fields

after each step and compare them with the previous

ones in order to ensure that the simulations are

converging. However, it should be noted that the

uniqueness of the solution is not guaranteed. The

number of scales that can be coupled is entirely

dependent on the problem that is being modeled.

A schematic of the sequential approach is given in

Fig. 2. The problem is divided into two scales: MD

modeling and FE modeling. The figure also illustrates

the complete separation of the scales and the process

of parameter passing between each simulation. The

necessity of feeding back the force fields for compar-

ison is also illustrated in the figure. The complete

separation of the simulations may lead to the loss of

information transfer between the fine and coarser

regions. This problem may become more pronounced

as more scales are coupled together. The sequential

coupling approach is best suited for coupling scales

with weak dependence. As the scales of interest begin

to show a stronger dependence, the one time passing

of boundary conditions may be insufficient to ensure

accuracy or realistic results. This will necessitate an

iterative passing of information between scales inher-

ent in concurrent multiscale methods.

Some examples of sequential coupling studies

available in literature include the study of tidal basins

starting from the Angstrom scale of water molecules

by Clementi and Reddaway (Clementi 1988). In his

research, an interatomic potential was first derived

from first principle quantum mechanical calcula-

tions and passed to a molecular dynamic simulation

used to obtain the densities and velocities of the

individual water molecules. These parameters were

then employed in a fluid dynamics calculation to model

the tidal circulation. Hao et al. (2003) developed

another prime example of a sequential model in the

design of a ductile fracture simulator of high toughness

steels. This model transcended scales from the quan-

tum to continuum with laws developed by each scale

that govern the behavior of the coarser scale. First

principle calculations derive the force separation laws

between atoms while coarser scale simulations, such as

finite element methods, provide a constitutive model

for crack propagation.

The analysis of carbon nanotube functionalization

and deformation has also been an area of active

research for sequential modeling approaches

(Odegard and Frankland 2005). Namilae and Chandra

(2005) developed a sequential model to study the

atomic scale interface effects on composite behavior.

In their study, they used molecular dynamics to

simulate fiber pullout tests of carbon nanotubes

embedded in a matrix. The MD results were used to

evaluate the cohesive zone parameters which were

then used as boundary conditions for the FE simu-

lations to obtain the macroscopic response of the

composite. It has, however, been identified that under

some circumstances the characterization of carbon

nanotube deformation can accurately be modeled

using purely continuum concepts (Yakobson et al.

1996). Carbon nanotubes, which have diameters on

the order of 1 nm, behave much like slender hollow

cylinders under bending and seem to display contin-

uum characteristics such as the formation of kinks as

strain energy release mechanisms and a constitu-

tive behavior similar to Hooke’s law. In this specialFig. 2 Schematic of the sequential approach
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case, quantum (Zhao and Ding 2008; Galano and

Francisco-Marquez 2008; An et al. 2007; Troya et al.

2003; Wang et al. 2006; Ding 2005), molecular (Cao

and Chen 2006a, b, 2007; Esfarjani et al. 2006; Zhao

and Cummings 2006; Gong et al. 2008; Buehler et al.

2004; Srivastava and Wei 2003; Mylvaganam et al.

2006), and continuum (Yakobson et al. 1996; Cao

and Chen 2006b; Pantano et al. 2004) models can all

provide comparable and accurate results. Additional

sequential coupling method studies can be found

in Cavallotti et al. (2005), Haslam et al. (2002),

Almeida et al. (2008).

3.2 Concurrent coupling

Of importance to this section is the coupling of the

atomistic and continuum regions to develop a unified

and concurrent treatment of a physical system. In this

case, we must introduce a transition region to couple

the different length scales associated with molecular

dynamic and finite element simulations as well as

allow two way transfer of the field variables of

interest between these two regions. The literature

contains numerous methods of concurrent coupling.

In this review, we limit our attention to the following;

(i) the combined finite element atomistic method

(FEAt), (ii) the material point method (MPM), (iii)

the local quasicontinuum method (QC), (iv) the

non-local quasicontinuum method, (v) the bridging

scale method, (vi) combined atomistic discrete dis-

location method (CADD), (vii) the atomic-scale finite

element method (AFEM), and (viii) coarse grained

molecular dynamics (CGMD). There are other meth-

ods which will be omitted from discussion either

because the focus was on scales of different interest

or the general approach is very similar to the methods

discussed above. The additional coupling methods

can be viewed in the literature (Broughton and

Abraham 1999; Abraham and Broughton 1998;

Abraham 2000; Fish et al. 2007).

3.2.1 The MD/FE transition region

Most MD/FE coupling methods incorporate a region

where the MD and FE domains interact and transfer

boundary conditions to ensure equilibrium and com-

patibility of these domains. This region is normally

referred to as the transition region or ‘handshake’

zone, and its general form is depicted in Fig. 3. The

treatment of the material in the transition region

between the atomistic and continuum regions is a

critical aspect of the problem. It is in this region that

most of the approximations are made due to the

inherent incompatibility of the two domains; namely,

the non-local formulation of the molecular dynamics

region and the local formulation of the finite element

region. Several features are common amongst all

concurrent coupling methods which employ this type

of transition region. First, one side of the transition

region is neighbored by the MD region and the other

by the FE region. The transition region consists of an

overlap of the two domains where both atoms and

finite element nodes are present. It has been a standard

practice to reduce the finite element node spacing to

Fig. 3 General depiction of

the transition region used in

coupling methods
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coincide with the atomic spacing so as to make a

smooth and seamless transition between the two

domains. This results in a one-to-one correspondence

between the atoms and nodes directly along the

interface between these two regions; this effectively

means that the nodes directly overlap the atomic

positions. This eliminates the need to interpolate

the atom positions throughout the elements at the

interface as well as to ensure continuity of the

displacements. The atoms and nodes share the same

position. As one moves away from the interface to the

continuum direction, the finite elements become

larger and the nodes become increasingly sparse.

This reduces the number of degrees of freedom of the

problem by representing the areas of little interest

with a coarser continuum representation. As in

standard finite element methods, there is no need to

limit the choice of elements used in the model to

one specific type. In the case of Fig. 3, four-noded

quadrilateral elements are used in the immediate

vicinity of the interface. As one moves further into the

continuum domain, eight-noded quadrilateral ele-

ments are used. The choice of element type, as with

many other factors, is dictated by the desire to balance

between accuracy and computational cost. The over-

lap atoms in the transition region serve the purpose of

providing the MD atoms along the interface with a

complete set of neighbors for them to interact with

according to the non-local formulation of the MD

region. They typically extend out a distance equal to

the cutoff distance of the interatomic potential used.

The overlap atoms are not true atoms in the fact that

they do not contribute their energies to the system but

only contribute their effects on the MD atoms. Their

positions are determined through interpolating the

displacements from the nodes of the elements in

which they reside. Weight functions are introduced at

the interface to ensure continuity of the field variables

(forces and displacements). These weight functions

vary according to the type of elements being used, the

number of nodes of each element that fall on the

interface, and in the case of the forces, the nodal

separation distance.

3.2.2 Finite element-atomistic method (FEAt)

One of the earliest concurrent coupling methods

developed was the combined finite element and

atomistic method (FEAt) by Kohlhoff et al. (1991).

This method was applied to the study of crack

propagation on cleavage and non-cleavage planes in

b.c.c. crystals as well as brittle fracture (Kohlhoff

et al. 1991; Gumbsch and Beltz 1995; Gumbsch

1995). This coupling method is capable of treating

plane static and dynamic problems. It uses non-local

elasticity theory to describe the transition region

between the MD and FE domains. It attempts to

address the non-local/local mismatch between the two

regions by using a non-local continuum formulation.

This approach will automatically correct for unreal-

istic forces called ‘ghost forces’ that occur due to the

locality mismatch, which will be discussed in the

following section. In their efforts to couple the MD

and FE domains, Kohlhoff and coworkers established

a one-to-one correspondence between atoms and

nodes throughout the entire transition region. In this

case, the transition region extends a distance of twice

the cutoff distance used by the interatomic potential.

This arrangement ensures compatibility between the

two domains at the interface. However, equilibrium

between the lattice and the continuum is not guaran-

teed a priori, and additional conditions are necessary.

These conditions are imposed on the elastic constants

by expanding the elastic energy in terms of Taylor

series with respect to the strains, viz;

E eð Þ ¼ E 0ð Þ þ oE=oeij

� ���
0
eij

þ 1

2
o2E= oeijoekl

� �� 	����
0

eijekl

þ 1

6
o3E= oeijoekloemn

� �� 	��
0
eijeklemn þ � � �

ð18Þ

Since the strains are assumed equal at the interface,

equilibrium of the stresses implies that the elastic

constants in both the atomistic and continuum

domains should be equal. It is therefore assumed

that the coefficients in the series are equal to the

elastic constants; viz:

cij ¼ oE=oeij

� �
j0 ð19Þ

cijkl ¼ o2E= oeijoekl

� �� 	��
0

ð20Þ

cijklmn ¼ o3E= oeijoekloemn

� �� 	��
0

ð21Þ

Terms up to and including the third order are matched

to ensure equilibrium. The fact that the Taylor

expansion has to be cut off at some point introduces

one of the approximations of this method.
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3.2.3 Material point method (MPM)

The material point method is an alternative to FE for

representing the continuum domain. This method was

developed by Sulsky et al. (1995) as a particle-in-cell

method. It was predominantly used to model fluid

flow but has been recently extended to the multiscale

modeling of silicon under tension by Lu et al. (2006a)

and to high energy cluster impacts by Guo and Yang

(2006). The MPM is relatively new to this field, and

can be used either in two- or three-dimensional

simulations.

The material point method is a finite-temperature

dynamic MD coupling method that uses two represen-

tations of the continuum; one based on a computational

mesh and the other based on a collection of material

‘points’ or particles. These two representations form

the Eulerian and Lagrangian descriptions of the

material, respectively. The structure of the method is

depicted in Fig. 4. The MPM method makes use of the

benefits of each description while avoiding the asso-

ciated problems with each. Traditionally, the finite

element method is used as a representation of the

continuum. However, if the material is seriously

distorted the FEM will typically result in severe mesh

distortion and the consequence is ill conditioning of the

element stiffness matrix leading to mesh lockup or

entanglement. This is avoided in the MPM in the way it

handles the deformations.

In the MPM, the material continuum is discretized

into a collection of material points whereby each

material point is assigned a mass based on the volume

it covers and the initial mass density. It also carries

all relevant physical characteristics, such as position,

velocity, acceleration, stress, strain and constitutive

parameters. These material points form the Langran-

gian description of the material. In the continuum

framework, motion is governed by the conservation

equations including mass, momentum and energy. In

the MPM, the conservation of momentum is solved

on a background Eulerian mesh to avoid the mesh-

lockup associated with the Langrangian description.

The FE shape functions are adopted to map infor-

mation between material points and background

grids. The MPM incorporates a hierarchical mesh

refinement technique that allows the FE mesh to be

reduced to the atomistic scale thereby forming a one-

to-one correspondence between material points and

MD atoms. A computational grid is constructed from

4- and 5-noded isoparametric quadrilateral elements

for two-dimensional simulations. These elements are

then used to define the shape functions associated

with the spatial nodes.

The coupling scheme used employs a similar

transition region as the one depicted in Fig. 3. The

only difference is that the MD atoms overlap the

material points as apposed to the FE mesh nodes. It

ensures compatibility of the strain fields of the system,

just as in the FEAt method, but it also does not

guarantee equilibrium of the lattice and continuum.

Therefore, the MPM method also follows the same

approach of matching the elastic constants to the

coefficients of the third order Taylor series expansion

of the interatomic potential. Thus, compatibility is

achieved as long as the elastic constants of the

continuum are equal to those defined by the inter-

atomic potential in the MD region.

3.2.4 The local quasicontinuum method

The quasicontinuum method was first conceived by

Tadmor et al. (1996b) at Brown University and has

since had a great deal of development and has been

applied to a number of different applications. The

method was first applied to modeling defects in single

crystal FCC metals and used to study nanoindentationFig. 4 MPM structure
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in thin films (Tadmor et al. 1996a). Shenoy et al.

(1998, 1999) generalized the method and extended it

to treat the interactions of dislocations with grain

boundaries in polycrystalline solids. Miller et al.

(1998a, b) used the method to study fracture at the

atomic scale and investigated the effect of grain

orientation on fracture and the interaction of cracks

with grain boundaries. Knap and Ortiz (2001) have

developed an entirely non-local three-dimensional

version of the model and applied it to the study of

nanoindentation. More recently, a method of coupling

the atomistics with discrete dislocation dynamics

using the QC method was developed by Qu et al.

(2005). A recent review of the QC method can be

found in Miller and Tadmor (2002). The QC method

is a static, zero-temperature coupling method. Efforts

are being made to extend it to account for finite-

temperature (Dupuy et al. 2005), and to develop a

dynamic version. The most recent study employing

the quasicontinuum method was performed by

Chandraseker and Mukherjee (2007) in which he

used it to estimate the elastic properties of single-

walled carbon nanotubes (SWNT) subject to coupled

extension and twist deformations. An important

feature of the QC method is that it allows the fully

atomistic regions to evolve with the deformation

during simulation using an adaptive mesh refinement

procedure similar to the ones employed in standard

finite element methods.

The QC method approaches the issue of coupling

by determining a total energy functional for the entire

system and enforcing its equilibrium by minimizing

this energy with respect to the atomic positions. As

with all other coupling methods, the goal of the QC

method is to drastically reduce the degrees of freedom

and computational cost of the problem, while main-

taining full atomistic details in regions where it is

required. This is achieved through the implementation

of two approximations: (i) the use of representative

atoms, and (ii) the implementation of the Cauchy-Born

(CB) rule to map continuum scale deformation fields

to the atomistic scale. In (i), the formulations introduce

a measure of the magnitude of deformation using the

deformation gradient F. This stipulates that if the

deformation gradient changes gradually at the atomic

scale, then it is not necessary to track the displacement

of every atom in the system. In this case, a small subset

of atoms is chosen to capture this gradual change.

This particular subset of atoms is referred to as

representative atoms. The representative atoms act as

atoms in the atomistic region and also serve the

purpose of acting as nodes in the continuum region.

The positions of the representative atoms can be

determined from FE methods and the positions of the

atoms located within the elements can be determined

from using interpolating functions. The implementa-

tion of the representative atoms in this manner will

reduce the degrees of freedom of the problem to only

those of the representative atoms. The selection of

representative atoms is determined from the magni-

tude of the change in the deformation gradient. If the

gradient changes drastically, this will indicate that

there is a need for greater details in this region in

which case more of the atomic positions are chosen as

representative atom locations. However, if the defor-

mation gradient changes slowly, this indicates that

there is little or no deformation occurring in this region

and that fewer representative atoms may be selected to

describe this region. In essence, the representative

atom density should be high in regions of large

deformation. Figure 5 illustrates this process for three

cases of varying deformation gradient with application

to an edge dislocation example. In the first two cases

the deformation gradient is either constant or changing

slowly over a prescribed distance of Dx. In these cases

it is sufficient to capture the deformation using few

atoms chosen as representative atoms. The third case,

however, shows a large variance in the deformation

gradient over the same distance in the immediate

Fig. 5 Representative atom selection based on deformation

gradient
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vicinity of the dislocation core. In order to accurately

capture this change more atoms will be required. Once

the representative atoms have been identified the FE

mesh is constructed by using them to define the nodes.

In regions where all atoms are chosen as representative

atoms, the dislocation core, the simulation reduces to a

purely atomistic model while the other areas maintain

a coarser FE representation.

For the purpose of energy minimization, the

energy of each atom must still be determined to

construct the total energy functional. This brings us to

item (ii) stated above. The use of linear interpolating

functions to determine displacements within the

elements effectively means that the deformation

gradient will be uniform throughout the elements.

The QC method makes use of the Cauchy-Born rule

which stipulates that a uniform deformation gradient

at the continuum scale can be mapped to the same

uniform deformation in the atomistic scale as

depicted in Fig. 6. This means that every atom in

an element will have the same energy. Therefore, the

energy of any element in the FE region can be

determined by multiplying the energy of one atom by

the number of atoms in the element; as follows:

Eeðu*Þ ¼ NeEiðu*Þ ð22Þ

where Ne is the number of atoms in element e, Ei is

the energy of one atom in element e and u
*

is the

interpolated displacement field. Now that the energy

formulation, for both the atomistic and continuum

regions, has been developed, the total energy for the

entire coupled system can be described as follows:

EQC ¼ Ea þ Ec ¼
X

i2ðA;IÞ
Eiðu*Þ þ

XNelement

e¼1

XeEeðu*Þ ð23Þ

where Ea is the total energy in the atomistic region

and Ec is the total energy in the continuum region.

The atomistic energy is simply the sum of all the

individual atom energies in the model. The summa-

tion includes both the atoms in the MD region and

those that lie along the interface between the MD and

FE regions. The continuum energy is a summation of

all the element energies where Nelement is the number

of elements in the model. To ensure appropriate force

contributions from both regions for the interface

atoms/nodes, the energies of the continuum elements

directly adjacent to the interface are weighted

differently in the total potential energy using the

weight functions xe. The QC method then employs

the conjugate gradient method to drive the system

towards equilibrium. The objective here is to deter-

mine the zero force positions of the atoms in the

model by minimizing the total potential energy

function with respect to the atomic positions.

3.2.5 The non-local quasicontinuum method

When applying the Cauchy-Born rule in the above

formulation of the QC method it is assumed that the

deformation is uniform throughout the elements. The

uniform deformation constraint, by the way it has been

applied, is only valid within the elements and not

along the interfaces or free surfaces. To correctly

account for the energy of the interfaces between

elements and surfaces, the non-uniform surroundings

of the atoms along the interface must be correctly

represented. For example, a representative atom that

resides along the interface between two elements will

be subject to a deformation gradient that will be

different in both elements. Therefore, the CB rule

cannot be applied to this atom. In order to accurately

account for this variation in the deformation gradient,

the continuum must be represented in a non-local

framework (Knap and Ortiz 2001). There are two ways

of implementing non-locality in the continuum region;

the energy-based and force-based formulations.

The energy-based formulation begins by modify-

ing the continuum energy functional to include onlyFig. 6 Cauchy Born rule depiction
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representative atom energies. Each representative

atom can be considered as a cluster of atoms, the

size of which depends on the location of the

representative atom in the system. In this case, the

energy functional will include a weighting scheme

that corresponds to the number of atoms in each

cluster. Under this formulation the continuum energy

is defined as the sum of all the representative atom

energies as given by

Ec ¼
XNrep

a¼1

naEaðu*Þ ð24Þ

where Nrep is the number of representative atoms,

na and Ea are the weight function and energy for

representative atom a, respectively. The representa-

tive atom energy is then determined from its

deformed environment. The simulation then proceeds

with the same energy minimization as in the previous

description.

The force-based formulation takes on a different

approach in which the need for an energy functional

for the entire system is abandoned. Instead, it

recognizes that the energy minimization process is

equivalent to finding the zero-force position of each

degree of freedom. Therefore, this form of the QC

method adopts the approach of working directly from

an expression for the forces on each representative

atom. The force on a node can be defined as

F
*

i ¼ �
oEa

oU
*

j

¼ �
XNn

i¼1

oEiðu
*

Þ
ou
*

ou
*

oU
*

j

ð25Þ

where u
*

and U
*

j are the interpolated displacement

field and the displacement of node j, respectively.

The summation of the force expression can be

reduced to a summation over a cluster of atoms

around a representative atom to reduce the compu-

tational burden and still maintain a certain level of

accuracy. Therefore,

F
*

i � �
XNn

ni

X

c2Ci

g
*

cNiðX
*

cÞ
" #

ð26Þ

where Ci refers to the set of atoms around represen-

tative atom i, gc is the atomic-level force experienced

by cluster atom c in the displacement field u
*
; and ni is

a weight function for a representative atom i.

The disadvantages of both non-local QC formula-

tions lie in the increase in computational cost when

compared with the local QC method. In determining

the force or energy of each cluster of atoms, one is

required to determine the updated position of each

atom that is represented in its respective cluster. The

benefit of these non-local formulations is the smooth

transition region. However, the reduction of the

degrees of freedom in regions of low-density repre-

sentative atoms leads to some errors. The non-local

formulations constitute some of the major develop-

ments of the QC method. However, the extension

towards both dynamic and finite-temperatures remain

a challenge. Efforts have also been made to extend

the original QC method to couple with quantum

mechanical calculations based on density functional

theory in which the method can extend over three

separate length scales and used to study the effect of

chemical interactions on macroscopic material

behavior (Lu et al. 2006a, b). This model was

successfully applied to the study of the effects

hydrogen impurities impose in the core of an edge

dislocation in aluminum as well as on the long-range

effects of the dislocation stress field.

3.2.6 The bridging scale method

The bridging scale is a dynamic finite-temperature

coupling method developed by Wagner and Liu

(2003) that can be used for either two- or three-

dimensional simulations. This method has been

applied to quasi-static nanotube bending, dynamic

crack propagation, dynamic shear banding, and wave

propagation (Park et al. 2005; Liu et al. 2006; Qian

et al. 2004). Most recently, the bridging scale method

has been used as the basis for developing a new

multiscale procedure to couple a mesoscale discrete

particle model and a macroscale continuum model of

incompressible fluid flow. This method is called the

mesoscopic bridging scale (MBS) method and was

developed by Kojic et al. (2008) but the details of this

method will be omitted because it is somewhat

outside the scope of this review.

The basic idea behind the bridging scale method is

to combine the MD and FE systems together into one

unified system. In so doing, some redundancy will

exist between the overlapping systems. In order to

remove the redundant MD degrees of freedom from

the combined system, an impedance force must be

added to the MD atoms at the boundary between

MD and FE regions. These impedance forces are
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introduced to compensate for the effects of the

removed MD atoms. In this way, the FE region will

exist everywhere, including those regions where MD

is present, whereas the MD region will only exist in

areas of interest or areas requiring high accuracy. The

bridging scale method provides two major advantages

when compared to other methods. The first is that the

MD and FE equations of motion do not require the

same time step because the continuum representation

exists everywhere and the displacement field is

decomposed into linearly independent coarse and

fine scales. These coarse and fine scales correspond to

the FE and MD displacement fields, respectively.

This also implies that the FE mesh does not need to

be refined and may maintain a coarse representation.

The second major benefit stems from the addition of

the impedance force. This force is responsible for

allowing high-frequency waves to naturally dissipate

out from the MD without propagating back and

corrupting both the MD and FE simulations with

oscillatory wave reflections.

The schematic approach to the bridging scale

method is illustrated in Fig. 7. At the top of the figure

both MD and FE systems are shown as separate,

distinct systems. When the two systems are combined

into a unified system, the coupled multi-scale equa-

tions of motion can be written as,

MA
€
u
* ¼ F

*

ð27Þ

M
€
d
*

¼ NT F
*

ð28Þ

where MA is the atomic mass matrix, u
*

are the MD

displacements, F
*

is the total MD force vector, M is

the finite element mass matrix, d are the FE nodal

displacements, and N is a matrix containing the finite

element shape functions. Equation 27 is the MD

equation of motion and the displacements q can be

determined by using any MD solver, while the MD

forces can be determined from any valid interatomic

potential energy function. In addition, one can use

standard finite element methods to solve Eq. 28. It is

important to note that the MD equation of motion is

only solved in the MD region, which for the time

being exists everywhere, but the FE equation of

motion is solved across the entire system.

The coupling of these equations is accomplished

through the coarse scale internal force, NT F
*

; which is

a function of the MD internal force, F
*

: In the MD

region the coarse scale internal force is determined by

extrapolating the MD internal force to the nodes of

the mesh by the use of FE shape functions. In this

way, the MD internal forces can be thought of as

defining the constitutive relation for the FE internal

forces. We should also note that the FE equation of

motion is redundant in the regions where both FE and

MD exist. The FE equation of motion is only an

approximation to the MD equation of motion.

Therefore, if the FE nodal spacing is reduced to

coincide with atom positions on a one-to-one corre-

spondence, the coarse scale internal forces will equal

the MD internal forces.

Removing the redundancy in the coarse scale

equation of motion will lead to the system depicted in

the final stage of Fig. 7. This system is governed by

the following coupled MD and FE equations of

motion

MA
€
u
* ¼ f tð Þ þ f imp

0;m;n tð Þ þ Rf
0;m;n tð Þ ð29Þ

M
€
d
*

¼ NT F
*

ð30Þ

whereFig. 7 Bridging scale schematic
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0;m;n tð Þ ¼

X

m0;n0

Z t

0

hm�m0;n�n0 t � sð Þ

� q0;m0;n0 sð Þ � �u0;m0;n0 sð Þ � Rd
0;m0;n0 sð Þ


 �
ds

ð31Þ

where (l,m,n) and (l0,m0,n0) denote a system used to

define unit cells. Equation 29 is the MD equation of

motion. The first term on the right-hand side is the

interatomic forces, which can be obtained from

interatomic potential energy functions. The second

term is the impedance force; it acts to replicate the

unwanted MD degrees of freedom in their absence.

This force only acts on the atoms along the interface

between the MD and FE regions. This force also

contains the time history kernel h(t - s), and acts to

disperse the fine scale energy from the MD region

into the surrounding FE region. The impedance force

or equivalently, time history kernel, distinguishes this

method from the others because it successfully allows

high-frequency waves that cannot be captured by the

coarse scale to be dissipated out of the MD region.

The third term in the MD equation of motion is the

random force term. It accounts for the thermal forces

due to the removed fine scale degrees of freedom in

their absence. For further details regarding this

method and the derivation of the equations of motion

the reader is referred to Wagner and Liu (2003).

3.2.7 Coupled atomistic dislocation dynamics

method (CADD)

The CADD method was developed by Shilkrot et al.

(2004) and has been applied to the modeling of the

two-dimensional nanoindentation process in single

crystal films (Miller et al. 2004). The CADD method is

claimed to offer two advantages over other methods;

the ability to accommodate discrete dislocations in the

continuum region and an algorithm for automatically

detecting dislocations as they move from the atomistic

region to the continuum region and then correctly

‘converting’ the atomistic dislocations into discrete

dislocations or vice-versa. Other methods also attempt

to follow deformations as they evolve, such as the QC

method, but they do not have a means of transforming

the dislocation into a continuum representation.

Therefore, every dislocation in the model will require

a full atomistic description which imposes a limit on

how many can be included in the simulation before the

computational cost becomes that of a fully atomistic

simulation. The CADD method is similar to all other

MD/FE coupling methods in that it too begins from a

separation of the spatial regions which are modeled

either by a fully atomistic model or continuum finite

elements. CADD extends these methods by address-

ing the above problem by allowing for the presence

and movement of continuum discrete dislocations that

interact with each other and with the atoms in the

atomistic region via their elastic fields. The CADD

method has been formulated specifically for 2D

problems. The method has not been successfully

extended to three dimensions although this is a current

area of research. The CADD method was also

primarily intended only for static zero-temperature

simulations but extensions to both static and dynamic

finite-temperature frameworks have been achieved for

modeling of the nanoindentation process (Shiari et al.

2005; Shlarl et al. 2008).

The CADD method couples to a discrete dislocation

framework using similar coupling schemes presented

above. In this way, this method can be thought of as an

extension to the above coupling methods. The main

distinguishing feature of the CADD method, the

multiscale treatment of dislocations, is independent

of the coupling scheme used, such that CADD can use

any of the techniques previously developed. There-

fore, the method of detecting the dislocations as they

move across the atomistic/continuum interface is the

primary contribution to literature.

Just as in the non-local formulation of the QC

method, the CADD method does not have a total

energy functional defined for the entire system.

Instead, this method enforces equilibrium through

finding the zero-force position of each degree of

freedom. Due to this methods ability to use previ-

ously developed coupling schemes, there is no reason

to repeat the details so the reader is referred to

Shilkrot et al. (2004) for a detailed illustration of the

methods ability to detect and pass dislocations from

the atomistic region to the continuum region and

vice-versa.

3.2.8 The atomic-scale finite element method

(AFEM)

The atomic-scale finite element method was devel-

oped by Liu et al. (2004b) as an alternative to
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traditional molecular dynamics. It is similar to the

MPM method in which the traditional FE continuum

representation was discarded for the material point

approach. In this case, the atomistic representation is

being replaced by the AFEM. This method is capable

of modeling in both two-and three-dimensions, but so

far is limited to static problems only. The AFEM is

quoted as being capable of achieving larger and

longer atomistic simulations with accuracy compara-

ble to that of molecular dynamics. The AFEM has

been widely used in the static study of carbon

nanotube deformation processes (Liu et al. 2004b,

2005; Guo et al. 2007; Leung et al. 2006) and crack

propagation (Adelzadeh et al. 2008), but shows

promise for solving other physics related optimiza-

tion problems.

The increase in attainable system sizes and shorter

simulation times associated with the AFEM method

lies in the fact that it is an N-order method whereas

typical MD simulations employing the conjugate

gradient method are of order N2. This is because the

AFEM uses both first and second order derivatives of

the system energy in the minimization processes,

whereas the conjugate gradient method only uses the

first. By doing so, the AFEM is capable of reaching a

stable state of energy minimization within one step

(for linear systems), whereas typical conjugate gra-

dient methods require multiple iterations. It is

important to note that for nonlinear systems with

complex interatomic potentials, the processes of

employing the second derivative for energy minimi-

zation does not provide any major benefit, and the

AFEM is no longer an N-order method. The reduction

in computational cost shows great potential for

increased system complexity and longer time scales

but only for linear systems. An additional benefit is

that the AFEM has exactly the same structure as the

continuum finite element method. This means it

works within the same theoretical framework of

employing a system of linear equations (Ku = F),

and therefore enables a seamless coupling between

the two regions by establishing a unified system of

governing equations. One of the major differences

between the AFEM and FEM and reasons for

increase in accuracy is that the former does not

involve any traditional approximations of the con-

ventional FE method, such as shape functions.

The atomic-scale finite element method relies on

developing material-specific atomistic elements

similar to the elements found in standard finite

element methods. The elements are then used to

represent the material under study. This presents

possibly the largest limitation for the AFEM. For

every material under study, a new atomistic element

must be analytically developed to match the atomic

structure and atomistic interactions depending on the

interatomic potential used. This can be a very difficult

and tedious process for classes of materials which

have complicated long-range atomic interactions. An

important characteristic, which must be implemented

into the design of the AFEM elements, is the non-

locality of the discrete atoms it is representing, or

equivalently, the multi-body interactions amongst

atoms. It is also necessary to develop transitional

elements between atomistic and continuum regions

when coupling AFEM to FE. The transitional

elements ensure smooth transition between the two

types of elements and possess both local and non-

local characteristics. The transitional elements are

also responsible for removing the effects of ghost

forces which plague most coupling methods. In this

way, the transitional elements are a form of the

transition region common in coupling methods and

encompass the majority of the approximations.

3.2.9 Coarse grained molecular dynamics (CGMD)

Refining the continuum region to atomic scales can

be problematic and should be avoided. Continuum

concepts rely on a continuous representation of the

material and use phenomenological formulations and

homogenization techniques to determine the field

variables. Alternatively, the atomic scale consists of

discrete particles and cannot be represented using a

continuum approach. If the FE mesh is refined to

atomic dimensions, the fundamental relations no

longer hold true and the framework of continuum

mechanics no longer applies. This problem will be

discussed in detail in the coming section, but it is

primarily for this reason, in addition to the reduced

degrees of freedom, that a coarser representation of

molecular dynamics called coarse-grained molecular

dynamics (CGMD) (Rudd 2005; Rudd and Broughton

1998) has been introduced to the field of multiscale

modeling. CGMD provides a means of attaining

larger system sizes while avoiding the problem of

scaling the continuum to fine scales. Traditionally,

CGMD has been widely used in the field of
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computational chemistry for the purpose of reducing

the computational burden associated with the mod-

eling of protein structures, lipid bilayers (Aoyagi

et al. 2002), and polymer chains (Izvekov and Voth

2005), to name just a few. However, this coarser

representation of MD also shows great potential for

the field of atomistic and continuum coupling. Rudd

and Broughton (2000, 2005) coupled CGMD to

standard MD and avoided the standard FE altogether.

This is because he was primarily interested in

modeling MEMS devices and quantifying phonon

spectra, where large continuum scales are generally

avoidable. However, it is also possible to use CGMD

as the finer scale in a coupled simulation to FE. This

would in essence bring the atomistics region closer to

the stable limits of continuum mechanics.

CGMD has specifically been formulated to address

several of the issues that limit the successfulness of

other coupling methods. It is designed for dynamic

and finite-temperature simulations thereby making it

applicable to a larger variety of problems. It also

avoids the effects of ghost forces by implementing a

well-behaved physical response to stationary strain

fields. CGMD avoids the issues related to high

frequency waves propagating out of the MD region

and reflecting back causing unphysical effects. This

method can also be implemented with a wide

variety of different MD models, including many-

body interatomic potentials that extend beyond

nearest neighbors.

The general idea behind CGMD is to group the

atomistic degrees of freedom into a cluster or bead of

atoms. Each bead or cluster carries all the material

properties associated with the atoms it is represent-

ing. In this case, the beads account for all the reduced

degrees of freedom of the problem. Figure 8 demon-

strates the general idea behind the CGMD method.

The figure illustrates the coarse-graining of a low

molecular weight polymer with epoxide groups at

each end (Bockenheimer et al. 2002). At the top of

the figure the chemical structure of the polymer is

shown. Directly beneath the structure is the corre-

sponding coarse-grained representation whereby each

bead embodies all the properties of the molecules it

is representing. The coarse graining of molecular

dynamics proceeds by obtaining a set of finite

element equations from an underlying atomistic

Hamiltonian. In this way the CGMD model is derived

completely from MD principles and contains no

continuum parameters. Although it employs a mesh-

ing scheme similar to that of FE, it avoids the

continuum concepts needed in FE representations. As

a result, this method provides a seamless coupling

scheme between the two domains and controls the

errors that normally arise in such coupling methods.

A few key characteristics of the CGMD method

merit discussion. First, the mesh can be refined, just

as the other methods, to have the nodes correspond

with atomic positions in regions where accuracy is of

importance. When the entire mesh is refined in this

manner, the coarse grained equations of motion

reduce to exactly that of the MD equations. Secondly,

the same timestep is used throughout the entire

simulation. Although the coarse grained region can

be run with a longer timestep, the computational

efficiency of this method provides little incentive to

do so. This is because one might run into problems

with the use of a spatially varying timestep. Lastly,

the way CGMD treats and manipulates the element

stiffness matrix throughout the course of the simula-

tion drastically reduces the computational burden. In

this way, the simulation of billions of atoms can be

achieved on a simple desktop workstation.

4 Emdl research activities in nanomechanics

The Engineering Mechanics and Aerospace Design

Laboratory (EMDL) at the University of Toronto is

devoting attention to three main areas in nanoengi-

neering/nanoscience. These are: (i) the mechanical

behavior of single-walled (SWCNT) and multi-walled

carbon nanotubes (MWCNT), (ii) continuum based

modeling of the thermal effects on the mechanical

behavior of carbon nanotubes, (iii) the use of nanof-

illers to reinforce bi-material interfaces. Further

details regarding (i) and (ii) can be viewed in Wong

et al. (2004), Liew et al. (2004), Meguid and Chen

(2007). In this topical review, we provide a summary

of our recent work on nano-reinforced interfaces.Fig. 8 CGMD bead representation
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The outstanding mechanical properties of carbon

nanotubes make them ideal candidates for use in a

wide variety of applications (Endo et al. 2004)

including as reinforcement agents in composite

materials. However, excellent fiber properties do

not necessarily translate into the same properties for

the bulk composite. Several issues pertaining to the

alignment, dispersion, length, size, chirality, orienta-

tion and load transfer need to be optimized in order to

achieve the best properties of the composite. Since

experimentation at the nanoscale is still developing,

the only way to quantify the effects of such param-

eters is predominantly through modeling. The large

discrepancy in the scales involved in quantifying the

macroscopic properties of nanocomposites from the

addition of CNTs shows a clear need for integrated

modeling methods. To date, there have been a

number of multiscale models developed for the

characterization of nano-reinforced polymer compos-

ites (NRPC). However, most of these efforts have

adopted the atomistic-based continuum technique

briefly described in the introductory section and

outlined in references Li (2003), Odegard et al.

(2002, 2003), Leung et al. (2005), Li and Chou

(2006), Hu et al. (2005), Shi et al. (2005), Tserpes

et al. (2008), Gao and Li (2005), Namilae and

Chandra (2005), Li and Chou (2003), Zeng et al.

(2008), Gates et al. (2005). The current state of

literature indicates that comparatively limited efforts

are being made in the development of concurrent

multiscale models for these classes of problems.

The current state of literature shows that a need

exists for developing multiscale models for nano-

reinforced interfaces. In this case, nano-fillers such as

nanotubes and nanopowders are embedded in epoxy

adhesives for improved bonding of either similar or

dissimilar adherents. Our nano-reinforced interface

research is concerned with the determination of the

influence of nanofillers on the strength and toughness

of thermoset epoxy adhesives used in the aerospace

industry. This is due to the recent shift in aircraft

design from the use of aluminum-based to composite-

based airframes. Composite-based airframes exhibit

excellent mechanical properties and lighter weight

when compared to their aluminum counterparts. They

are also capable of being constructed from adhesive

joining processes as apposed to traditional mechan-

ical fastening. Advantages of adhesive bonding over

conventional mechanical fastening processes are

several. These include a better distribution of stresses

over the entire bonded area, ability to optimize the

geometry of the bonded joint, the ability to bond

dissimilar materials, good fatigue resistance and

damping, and reduced weight of the assembly.

However, when compared with the adherend mate-

rials, an adhesive bonding layer generally offers a

low level of mechanical strength and fracture tough-

ness, especially at elevated temperatures and long

term loading. The use of multi-layered laminates in

the aircraft industry relies heavily on a strong and

tough interface between the different layers. Unfor-

tunately, the price of high strength epoxy is reduced

toughness. This could be in part because of the

complexity in the bonding process, the presence of

porosities, micro-defects, and second-phase particles

in the adhesive layer. The stringent toughness

requirements of critical loading-bearing members

necessitate the reinforcement of the adhesive layers

and interfaces.

The influence of nano-reinforcement in adhesively

bonded joints on tensile strength, interfacial shear

strength, and fracture toughness was investigated

experimentally using SEM, TEM, and mechanical

testing (Sun 2007), and will subsequently be studied

theoretically using multiscale modeling. The exper-

imental results reveal that the addition of nanofillers

into the thermoset epoxy increases its strength and

toughness (Meguid and Sun 2004). However, the

increase in the amount of nanofillers beyond a certain

critical value, could lead to deterioration in the

strength and toughness of the resulting interface.

Given below is a summary of the experimental work

conducted at EMDL, the corresponding findings, and

a description of the approach that will be adopted in

the development of a concurrent multiscale model.

4.1 Substrates and nanofillers

The new Airbus A380 is made of approximately 30%

of glass reinforced aluminum composites (GLARE).

This composite is composed of alternate glass fiber

epoxies (GFRP) and aluminium layers as depicted in

Fig. 9. A competitor of the A380, the Boeing 787,

predominantly uses carbon fiber composites (CFRP)

(Baker et al. 2004). In the research conducted by our

group, Meguid and Sun (2004) used adherents made

of these same materials; aluminum, CFRP, GFRP, and

the epoxy was aerospace grade with low temperature
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capabilities. The nano-reinforcing fillers consisted of

single-walled carbon nanotubes (SWCNTs) and alu-

mina nanofiber powder. These fillers were varied in

weight percentage and there effects on the adhesive

properties were studied. Figures 10 and 11 show the

SEM images of the SWCNTs and TEM micrographs

of the alumina nanofiber powder, respectively. A

comparison of the nanofiller mechanical properties is

also shown in the following table.

Property Carbon nanotube Alumina

nanopowder

Size 1–2 nm in diameter 2–4 nm in diameter

Young’s modulus 1 TPa (in-plane) 300 GPa

Tensile strength 200 GPa (in-plane) 2000 MPa

0.1–0.5 MPa

(out-of-plane)

Aspect ratio 10–30 20–80

Surface area 300–600 m2/g 300–700 m2/g

4.2 Experimental results

Tensile and shear tests were conducted to study the

effect of type and composition of nanofiller on the

mechanical properties of the nano-reinforced inter-

face. Figure 12a shows the tensile load against the

displacement data for three different cases: epoxy

adhesive with 2.5% alumina nanopowder (EANP),

epoxy adhesive with 2.5% carbon nanotubes (EANT)

and pure epoxy adhesive (EA). The figure indicates

that the bonding strength increases as a result of the

presence of uniformly dispersed carbon nanotubes

and alumina nanoparticles. Figure 12b and c show

improvement in the Young’s modulus as well as the

ultimate tensile strength for the cases involving

different weight fractions of homogeneously dis-

persed nanofillers used in the study. However, for

weight percentages above 10%, the properties

degrade to below the pure epoxy adhesive, indicative

of the sensitivity of the epoxy to the strength of the

concentration of the dispersed nanofillers.

The shear test results are depicted in Fig. 13.

Figure 13a shows load–displacement data resulting

from the shear lap tests for the same three different

cases. The filler concentration was 2.5% by weight for

both EANP and EANT samples. The figure reveals

that there is also an increase in the shear resistance as

a result of dispersed carbon nanotubes and alumina

nanoparticles. Figure 13b and c show the improve-

ment in the shear modulus as well as the shear strength

for the cases involving different concentrations of

Fig. 9 Glare pre-preg (After Baker et al. 2004)

Fig. 10 SEM micrograph of carbon nanotubes (After Meguid

and Sun 2004)

Fig. 11 TEM micrographs of alumina nanofiber powder

(After Meguid and Sun 2004)
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dispersed alumina nanopowders and carbon nano-

tubes. Analogues to the tensile tests, the results also

reveal the sensitivity of the shear properties to the

concentration of the nanofillers. An increase in the

weight fraction of the nanofillers beyond 7–8% results

in a reduction in the shear properties of the adhesive.

Figure 14 shows three SEM micrographs of the

failure surface of the carbon CFRP composite. They

provide useful information about the strength of the

interface as a result of the dispersion of the alumina

nanopowder. For example, Fig. 14a shows the sur-

face failure at the interface from the CFRP side due to

shear loading for a weight fraction of 2.5% dispersed

alumina nanopowder. Two distinct regions exist: the

first is the dark region showing exposed fibres of the

Fig. 12 Tensile test results for nano-reinforced epoxy adhe-

sives: (a) Load–displacement for EANP, EANT and EA, (b)

Ultimate tensile strengths for both EANT and EANP speci-

mens, (c) Young’s modulus for both EANT and EANP

specimens (After Meguid and Sun 2004)

Fig. 13 Shear test results for nano-reinforced epoxy adhe-

sives: (a) Load–displacement for EANP, EANT and EA, (b)

Ultimate shear strengths for both EANT and EANP specimens,

(c) Shear modulus for both EANT and EANP specimens (After

Meguid and Sun 2004)
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CFRP substrate, while the second contains remnants

of the nano-reinforced adhesive. The rough areas of

the CFRP suggest a stronger bond exists at the

interface as a result of the strengthening effect

resulting from the dispersed nanofillers. Figure 14b

and c, with their respective nanopowder weight

concentrations of 7.5% and 15%, show reduced areas

of the exposed fibres of CFRP. Figure 14b shows

clearly fibre pull out at the interface of a section of

the bare CFRP. However, larger areas are covered by

the epoxy adhesive indicative of the reduction in the

strength in comparison with Fig. 14a for the 2.5%

case. For carbon nanotubes reinforced interfaces,

Fig. 15a–c show typical failures of three different

interfaces corresponding to nanotube weight concen-

trations of 2.5%, 7.5% and 15%, respectively. Again,

it is observed that for the 2.5% case, large areas of

carbon fibres of the substrate are exposed due to the

strong adhesive bonding.

We attribute that dependence of the tensile and

shear properties of nano-reinforced interface to the

following. The nanosized fillers are characterized by

large surface areas per unit gram. As the number of

adhesively joined points increases, the cohesive

strength of the epoxy increases leading to a higher

mechanical strength of the interface. Our experimen-

tal results show that there is a limit to the number of

dispersed nanofillers beyond which a drop in the

properties is observed. Once the nanoparticles fully

fill the gaps and porosities and all contact points are

established, the additional particles cannot interact

effectively within the epoxy adhesive and conse-

quently, poor matrix infiltration occurs. It is also

believed that agglomeration of the nanoparticles

could act as failure initiation sites, which could result

in lowering the strength and stiffness of the adhesive.

4.3 Development of a multiscale model

In order to support the experimental work discussed

above, the development of a multiscale model is

required. In the case of NRPC, it has been standard

Fig. 14 SEM micrograph

of shear test failure surfaces

for nanopowder specimens:

(a) 2.5% dispersed alumina

nanopowder, (b) 7.5%

dispersed alumina

nanopowder, (c) 15%

dispersed alumina

nanopowder (After Meguid

and Sun 2004)
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practice to develop representative volume elements

(RVE) that can be used as the building block to study

the macroscopic material response to different load-

ing conditions. In this case, only the individual

nanotube and surrounding polymer matrix are con-

sidered. Then, through the use of the atomistic-based

continuum technique, the effective properties of the

RVE are obtained. However, for the study of nano-

reinforced interfaces, the problem necessitates a

model capable of representing the system in its

entirety. Here we must capture not only the interac-

tion between nanotube and matrix but also the

interaction between neighboring nanotubes, epoxy,

and substrates as they may significantly affect the

bulk properties. This will call for a reduction in the

number of degrees of freedom of this complex system

size. This can be achieved through concurrent

coupling of CGMD and FE (Meguid and Sun

2005). In using a CGMD/FE coupled model to

represent the nano-reinforced interface system, we

must correctly decompose the problem into CGMD,

FE, and transition regions as depicted in Fig. 16.

Here we have chosen to model the entire epoxy

matrix and nanofiller subsystem in a CGMD repre-

sentation, while the substrates are modeled in a FE

framework.

Fig. 15 SEM micrograph

of failure surfaces for

carbon nanotube specimens:

(a) 2.5% dispersed carbon

nanotubes, (b) 7.5%

dispersed carbon nanotubes,

(c) 15% dispersed carbon

nanotubes (After Meguid

and Sun 2004)

Fig. 16 Multiscale model of nano-reinforced interface
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The development of a concurrent CGMD/FE

multiscale model presents a number of challenges.

Most importantly, the interaction and load transfer

between nanotube and epoxy matrix must correctly

be accounted for in a CGMD system. Due to the

similarity between this class of problems and those of

NRPC, the same considerations pertaining to the load

transfer between reinforcing agent and polymer

matrix need to be included. Different approaches

can be adopted in characterizing the mechanisms

and magnitudes of load transfer between a nanotube

and polymer matrix. The interfacial characteristics

between the CNTs and polymer matrix remain

unclear and researchers have reported a large range

of interfacial shear stresses. Due to the lack of

consistency, three approaches are possible. First, it

can be assumed that no chemical bonding exists

between the nanotubes and polymer matrix. In this

case, only non-bonded potentials and van der Waals

forces are considered. To avoid weak interfacial

strength, some researchers propose that the chain of

the polymer wrap around the nanotube in a helical

fashion to enhance the non-bonded nanotube-polymer

interaction, which has been observed experimentally

(Lordi and Yao 2000). Figure 17 illustrates this

process for a polystyrene polymer chain wrapping

around a SWCNT. The second approach is to assume

that there exist strong chemical bonds. In this case,

C–C covalent bonds are included between the

nanotube and polymer, which increases the interfa-

cial strength significantly. The third consideration

assumes that covalent cross-links form between the

nanotube and polymer matrix. In this case, only a

small percentage of covalent bonds form from the

introduction of multifunctional amines which act as

intermediary bonding sites between the nanotube and

polymer chains. However, it is possible that the

chemical bonding in the form of functionalization

may compromise the properties of the nanotube by

introducing structural changes in the graphitic layers

of the nanotube (Fiedler et al. 2006). Frankland et al.

(2002) studied the effect of functionalization, in the

form of chemical cross-links, on the mechanical

properties of a polymer composite. They found that

by introducing chemical cross-links, involving as

little as 1% of the carbon atoms in the nanotube, the

properties of the nanotube-polymer interface can be

increased significantly. A depiction of the model used

in one of their studies is shown in Fig. 18. When

developing the concurrent multiscale model it will be

important to clearly identify which of the above

processes will be considered.

Fig. 17 Polystyrene

polymer chain wrapped

around a SWCNT (a) side

view (b) top view (After Hu

et al. 2005)
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Next, we must also accurately represent the

individual CNTs and epoxy polymer chains without

having to explicitly model every atom. It will be

difficult to establish the optimal magnitude of coarse

graining in the molecular region. This is because if

the nanotubes and polymer chains are coarse grained

to the extent that each individual chain or tube is

represented as a single bead, the interaction mecha-

nisms mentioned above will be extremely difficult to

implement and the simulation may loose a certain

level of accuracy. On the other hand, if the level of

coarse graining is too low the number of degrees of

freedom will be excessively large and the simulation

may take an extremely long time to converge. As

with many other factors, there is a delicate balance

between computational cost and level of accuracy.

Of course, as with all of the other concurrent

coupling methods presented in the review, the exact

details of the coupling scheme will have to be

decided. Since no efforts have been made in coupling

CGMD to FE, serious attention will have to been

given to this area of the problem. Furthermore, the

coupling scheme will have to avoid the limitations

presented in the following section, which alone can

be a great challenge. These are just some of the issues

that need to be addressed in order to accurately

model the nano-reinforced interface problem. Further

details regarding the concurrent CGMD/FE multi-

scale model will be the subject of our forthcoming

publication.

5 Limitations of current coupling methods

In spite of the excellent contributions made by the

referenced scientific community, these contributions

suffer from a number of challenges. These are

summarized below.

5.1 Finite element reduction

Many of the methods discussed above adopt a similar

approach of refining the FE mesh down to the size of

the atomic lattice dimensions. The purpose of this

refinement is to ensure seamless transition from the

FE to the MD regions. This approach makes for a

much easier computation in the transition region

between the two domains by allowing the interface

atoms to occupy the same location as a node thereby

defining the nodal positions by the MD atom

positions. As mentioned earlier, the fundamental

assumption that continuum mechanics relies on is the

homogeneous and continuous description of the

material in question. Essentially, continuum theory

requires that variables such as temperature, density,

pressure, and stress can be defined by an averaging

process and that these variables are assumed to be

smoothly varying continuous functions of position.

As the length scales of interest become equal to

microns and nanometers, quantities such as stress,

strain, density and temperature begin to lose their

traditional meaning. Since molecular dynamic simu-

lations occur on the nanometer scale or less, the

material must be described using discrete points such

as atoms or molecules in order to accurately capture

the physics that occur at this scale. Therefore, by

scaling the continuum region down to the MD scale

the fundamental continuum assumptions become

invalidated and no longer hold true.

It is difficult to establish at exactly what point of

mesh refinement the continuum region loses its

validity but in order to do so we must keep the

Fig. 18 Functionalization

of CNT through chemical

cross-linking: (a) Non-

fuctionalized polyethylene

nanotube RVE, (b) cross-

link between nanotube and

polymer chain, (c)

arrangement of cross-links,

(d) functionalized

polyethylene nanotube RVE

(After Frankland et al.

2002)
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underlying assumptions in mind. The continuum

formulations remain intact provided that the length

scales of interest are much larger than the length

scales of molecular variation in the system under

consideration. This is so that the concepts of stress

and strain remain valid and applicable. When mod-

eling systems of molecular scale, we must ask

ourselves if the molecular details of the system can

be ignored. The methods presented above have

adopted the approach of fine-scaling the continuum

region when the logical alternative would have been

to coarsen the atomistic region.

5.2 Wave reflection

The problem in this case stems from the fact that the

wavelength emitted by the MD region is much

smaller than what can be captured by the FE region.

Since energy conservation is enforced, the wave is

reflected back into the MD region leading to oscil-

latory solutions. When reducing the FE mesh to

atomic dimensions, it is assumed that the FE mesh

would be able to capture these high-frequency waves

and allow them to pass through unimpeded, although

other effects such as differences in compliance

between the two regions will still cause some wave

reflection. The most successful way of permitting

high-frequency wave travel through the interface is

through the incorporation of an impedance force

acting on the interface atoms. This was done in the

bridging scale method which showed that if the

impedance force was not incorporated only 30% of

the MD energy was transferred into the continuum

whereas if the force was incorporated nearly 99.9%

of the energy was transferred (Liu et al. 2004a, b).

Further details can be viewed in references Karpov

et al. (2005), Wagner et al. (2004).

5.3 Ghost forces

The respective local and non-local mismatch between

the FE and MD regions introduces spurious effects

across the interface of the transition region. The

molecular dynamics non-local formulation implies

that the energies of individual atoms interact not only

with their immediate neighbours but also with others

a distance rcut-off away. The local formulation of the

continuum implies that energy is uniformly defined

throughout an element and is only dependant on the

energy defined at the nodes of that element. Obtain-

ing the nodal and atomic forces in the system,

through minimizing the total potential energy, leads

to non-accurate forces within the transition region.

This can be attributed to the introduction of the

overlap atoms as a means of maintaining the proper

neighboring for the non-local MD atoms. The overlap

atom energies are omitted from the total energy

functional because they introduce redundant degrees

of freedom. The basic idea behind these ‘ghost-

forces’ is that some atoms in the MD region have

missing force contributions because the overlap atom

energies are not included in the calculation. Further-

more, some FE nodes have extra force contributions

acting on them. Therefore, some atoms are not being

treated as true atoms and some nodes are not being

treated as true nodes. Since the interfacial forces are

in error, the atom and nodal displacements at the

interface are also incorrect. An example of how ghost

forces arise can be found in the review by Curtin and

Miller (2003).

A means of correcting ghost forces in the QC

method has been developed by the Rodney and

coworkers (Shenoy et al. 1999). He also extended the

method to three dimensions and used it to study

junction formation and destruction between interact-

ing dislocations (Rodney and Phillips 1999). In an

attempt to overcome this difficulty, they introduced

the missing forces as dead loads. Ghost forces are

calculated from the initial reference state of the

material system and are then subtracted from the

relevant degrees of freedom throughout the entire

course of the simulation. With these forces acting as

dead loads, the QC energy functional is modified to

include the work done by these forces during the

deformation. It should be noted that this method of

correcting for ghost forces could be applied to other

methods as well.

An alternative approach to eliminating ghost

forces is to abandon the requirement for a well-

defined energy functional for the system and to drive

the system to equilibrium by seeking a configuration

for which the force on all the atoms is zero. In this

way, the continuum region is made non-local and the

locality mismatch is avoided. In using this approach,

the forces do not need to be determined from the

derivatives of the energy functional. Instead, expres-

sions for the forces are approximated. This approach
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is adopted in the force-based formulation of the non-

local QC method as well as in the CADD method.

5.4 Uniform deformation gradient

When employing the Cauchy-Born rule in certain

coupling methods, the continuum deformation is

restricted to being uniform. This implies that the

underlying atomistic deformation is also uniform and

that each atom bond exhibits the same deformation as

its neighbor throughout the entire element. In regions

employing a coarse FE mesh, atomistic details will

not be captured due to the use of this approximation.

In engineering problems, this is rarely the case and

this assumption imposes unrealistic conditions on the

validity of these methods. For example, plasticity and

contact problems can cause sharp gradients in the

deformation field and this assumption would not

maintain its validity for these types of problems. In

order to capture the atomistic details the FE mesh

would have to be refined to the point where the

number of degrees of freedom would be excessively

large. The uniform deformation gradient also implies

that the only type of element that can be used

throughout the FE region is restricted to three-noded

triangular elements. These elements are known for

their computational efficiency but lack accuracy.

5.5 Unrealistic interatomic potentials

A simulation is realistic if it can replicate the

behavior of a real system. For molecular dynamic

simulations this can be achieved only to the extent

that the interatomic forces are similar to those that

real atoms would experience in the same configura-

tion. The forces are determined as gradients of the

interatomic potential energy function. The accuracy

of the simulation therefore depends on the ability of

the potential to replicate the behavior of the material.

In order for these simulations to be viable, it is

important to incorporate interatomic potentials that

accurately represent the interaction between atoms

for a particular material. These can depend on;

attractive and repulsive forces, bonding angles, bond

types, electron densities, vacancies, cohesive ener-

gies, and bond types, just to mention a few. The

complex nature of these interactions leads to diffi-

culties in developing accurate and valid expressions

for these potentials. Furthermore, it is very difficult to

justify or validate the accuracy of these potentials. It

is also important to note that interatomic potentials

have incorporated a cutoff distance in their formula-

tions to disregard the interactions between far

neighbouring atoms. This results in simpler calcula-

tions but introduces a separate problem as well. When

a potential is truncated or ‘cut short’, a particle pair

that passes the cutoff distance will introduce a jump

or step function into the energy. Many of these events

can corrupt the energy conservation of an MD

simulation. It is for the above reasons that the

scientific community has adopted the use of the most

cost effective expressions, which can be drastically

over simplified. There is a direct trade-off between

accuracy and cost when determining the choice of

potential for the system.

5.6 Solution algorithms and timestep

The timestep in FE simulation is governed by the

smallest element in the mesh. Therefore, if the FE

mesh is refined down to the atomic scale, the

simulation will evolve very slowly in the sense that

many timesteps will be used to simulate the dynamics

in the areas of little interest. It also seems inefficient

that the FE simulation should evolve at the same time

scales as the atomistic level. This problem will

directly affect the computational cost of the simula-

tion. The bridging scale method was developed as a

means of avoiding this issue by completely separating

the two length scales whereby the FE region exists

everywhere and the MD region only exists in areas of

interest. This way, there is no restriction on the FE

mesh to be refined to atomic dimensions, thereby

the continuum simulation can evolve on a larger

timestep.

Time integration algorithms are based on finite

difference methods, where the time is discretized on a

finite grid. The timestep is the distance between

successive points on the grid. These algorithms are

only approximate and have two errors associated with

them. First, truncation errors arise because these

algorithms involve Taylor expansions which need to

be truncated at some point. Secondly, round-off errors

arise from the implementation of the algorithms on

operating systems which use a finite number of digits

in their arithmetic operations. Both these errors can

lead to a divergence of the solution. As very small

timesteps need to be used in the atomistic domain, the
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highly iterative nature of these multiscale simulations

can cause error amplification.

5.7 Degrees of freedom/relevance to design

One of the main goals of multiscale modeling is to

drastically reduce the number of degrees of freedom

of engineering problems while maintaining accuracy

in regions of interest so that the modeling of large-

scale problems could be realized. The methods

developed thus far have not achieved the goal of

attaining large realistic system sizes. Instead, these

methods have focused on very limited problems and

only managed to minimally reduce the computational

cost of these problems. Even with the use of parallel

computing these methods still require a long time to

simulate the problems of interest.

All single scale modeling methods provide results

that lead to an understanding of how a material or

component will behave under specific conditions.

This information is then passed on to designers to

learn from and incorporate into future designs. The

multiscale methods developed thus far have not

demonstrated the usefulness for engineering design.

They do not encompass the applicability or relevance

to a wide variety of engineering problems. They are

problem specific and only demonstrate the minor

ability to reduce the degrees of freedom of the

problem rather than produce results that are mean-

ingful to engineers. Unless the efforts are directed to

real engineering problems, the efforts become mere

numerical gymnastics. Clearly, the results can be

used to assist in developing new material systems.

However, this is also limited by the prohibitive cost

associated with nanotechnology.

6 Conclusion and future work

The contents of this review have demonstrated the

significant efforts made by the research community in

developing a seamless coupling scheme between

atomistic and continuum scales. The research being

conducted in the field of atomistic/continuum cou-

pling is bringing us ever closer to a truly seamless

coupling scheme capable of modeling a vast variety of

problems. We are now able to model problems of ever

increasing size, complexity and accuracy. However,

despite these efforts, there still exist major challenges

and limitations in achieving such a goal. The methods

presented above have their own advantages, but each

lacks where another prevails. An ideal coupling

method would incorporate all the positive aspects of

each method into one sole approach. This method

would be capable of both static and dynamic simu-

lations at finite-temperatures. It would substantially

reduce the degrees of freedom of any problem thereby

reducing the computational burden and extending its

abilities to large-scale problems. Other features of the

method would include the ability to model in both

two- and three-dimensional space, be capable of

longer timescales, and applicable to a larger set of

engineering problems. It would also avoid the issue

of disparate timescales, the major bottleneck in most

simulations. Few methods have achieved some of

these goals, while others have developed ways of

accelerating the simulations for very specific cases.

The development of this type of method seems more

realistic than the advancement of computers with

processing abilities capable of modeling entire macro-

scale problems using purely atomistic approaches. For

this to be realized, it is crucial that the scientific

community acknowledges the advancements being

made in computational material science and combine

efforts to achieve this goal.

The field of nanoengineering shows great potential

for application of multiscale modeling methods. This

is because of the intimate dependence between the

atomistic and continuum scales in such systems as

well as it is very difficult to accurately model nano

systems using individual methods either because of

the computational cost or complexity of the system.

With the development of a truly seamless coupling

method realistic system sizes can be achieved and

used to validate designs and experimental processes.

The study of nano-reinforced interfaces for one can

use multiscale models to optimize filler type and size

for improved toughness in epoxy adhesives used in

the aerospace industry. Without the use of these

models, one might be at liberty to make unjust

recommendations which could ultimately lead to

flawed or unsafe designs. The field of multiscale

modeling has great potential and is ultimately reliant

on the development of a seamless coupling scheme

between the atomistic and continuum scales in a

computationally efficient manner.

This review has addressed the main atomistic/

continuum coupling methods used in computational
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nanomechanics. There are other methods which have

been omitted from discussion either because the focus

was outside the scales interest or the general

approach is very similar to the methods discussed

above. The key limitations and challenges of the

above methods have also been addressed for the

reader to take into consideration. The review

addressed also the recent developments in the field

of nano-reinforced composites. This included a

discussion on the research conducted by the authors

in nano-reinforced interfaces. The issues of concern

in nanomechanics are the subjects of our ongoing

research at EMDL. We will continue to focus our

efforts towards developing a perfectly seamless

transition region that can overcome many of the

difficulties that currently exist in the field of multi-

scale modeling as mentioned above. Specifically,

efforts will be applied to studying the effects of

nanofillers on the bond strength and toughness of

interfaces. We will attempt to further this research

through the development of multiscale models that

can accurately simulate the nano-interface problem.

These models are currently being developed. Details

of our efforts will be the subject of our forthcoming

publication.
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